142 research outputs found

    Analysis of the Early-time Optical Spectra of SN 2011fe in M101

    Get PDF
    The nearby Type Ia supernova (SN Ia) SN 2011fe in M101 (cz = 241 km s^(–1)) provides a unique opportunity to study the early evolution of a "normal" SN Ia, its compositional structure, and its elusive progenitor system. We present 18 high signal-to-noise spectra of SN 2011fe during its first month beginning 1.2 days post-explosion and with an average cadence of 1.8 days. This gives a clear picture of how various line-forming species are distributed within the outer layers of the ejecta, including that of unburned material (C+O). We follow the evolution of C II absorption features until they diminish near maximum light, showing overlapping regions of burned and unburned material between ejection velocities of 10,000 and 16,000 km s^(–1). This supports the notion that incomplete burning, in addition to progenitor scenarios, is a relevant source of spectroscopic diversity among SNe Ia. The observed evolution of the highly Doppler-shifted O I λ7774 absorption features detected within 5 days post-explosion indicates the presence of O I with expansion velocities from 11,500 to 21,000 km s^(–1). The fact that some O I is present above C II suggests that SN 2011fe may have had an appreciable amount of unburned oxygen within the outer layers of the ejecta

    Progressive Redshifts in the Late-Time Spectra of Type IA Supernovae

    Get PDF
    We examine the evolution of late-time, optical nebular features of Type Ia supernovae (SNe Ia) using a sample consisting of 160 spectra of 27 normal SNe Ia taken from the literature as well as unpublished spectra of SN 2008Q and ASASSN-14lp. Particular attention was given to nebular features between 4000-6000 A in terms of temporal changes in width and central wavelength. Analysis of the prominent late-time 4700 A feature shows a progressive central wavelength shift from ~4600 A to longer wavelengths out to at least day +300 for our entire sample. We find no evidence for the feature\u27s red-ward shift slowing or halting at an [Fe III] blend centroid of 4701 A as has been proposed. The width of the feature also steadily increases with a FWHM ~170 A at day +100 growing to 200 A or more by day +350. Two weaker adjacent features around 4850 and 5000 A exhibit very similar red shifts to that of the 4700 A feature but show no change in width until very late times. We discuss possible causes for the observed red-ward shifting of these late-time optical features including contribution from [Co II] emission at early nebular epochs and the emergence of additional features at later times. We conclude that the ubiquitous red shift of these common late-time, nebular SN Ia spectral features is not mainly due to a decrease in a blueshift of forbidden Fe lines but the result, in part, of decreasing velocity and/or optical depth of permitted Fe lines

    Dust in the wind: the role of recent mass loss in long gamma-ray bursts

    Full text link
    We study the late-time (t>0.5 days) X-ray afterglows of nearby (z<0.5) long Gamma-Ray Bursts (GRB) with Swift and identify a population of explosions with slowly decaying, super-soft (photon index Gamma_x>3) X-ray emission that is inconsistent with forward shock synchrotron radiation associated with the afterglow. These explosions also show larger-than-average intrinsic absorption (NH_x,i >6d21 cm-2) and prompt gamma-ray emission with extremely long duration (T_90>1000 s). Chance association of these three rare properties (i.e. large NH_x,i, super-soft Gamma_x and extreme duration) in the same class of explosions is statistically unlikely. We associate these properties with the turbulent mass-loss history of the progenitor star that enriched and shaped the circum-burst medium. We identify a natural connection between NH_x,i Gamma_x and T_90 in these sources by suggesting that the late-time super-soft X-rays originate from radiation reprocessed by material lost to the environment by the stellar progenitor before exploding, (either in the form of a dust echo or as reprocessed radiation from a long-lived GRB remnant), and that the interaction of the explosion's shock/jet with the complex medium is the source of the extremely long prompt emission. However, current observations do not allow us to exclude the possibility that super-soft X-ray emitters originate from peculiar stellar progenitors with large radii that only form in very dusty environments.Comment: 6 pages, Submitted to Ap

    Comparative Analysis of SN 2012dn Optical Spectra:Days −14 to +114

    Get PDF
    SN 2012dn is a super-Chandrasekhar mass candidate in a purportedly normal spiral (SAcd) galaxy, and poses a challenge for theories of type Ia supernova diversity. Here we utilize the fast and highly parametrized spectrum synthesis tool, SYNAPPS, to estimate relative expansion velocities of species inferred from optical spectra obtained with six facilities. As with previous studies of normal SN Ia, we find that both unburned carbon and intermediate-mass elements are spatially coincident within the ejecta near and below 14 000 km s−1. Although the upper limit on SN 2012dn\u27s peak luminosity is comparable to some of the most luminous normal SN Ia, we find a progenitor mass exceeding ∼1.6 M⊙ is not strongly favoured by leading merger models since these models do not accurately predict spectroscopic observations of SN 2012dn and more normal events. In addition, a comparison of light curves and host-galaxy masses for a sample of literature and Palomar Transient Factory SN Ia reveals a diverse distribution of SN Ia subtypes where carbon-rich material remains unburned in some instances. Such events include SN 1991T, 1997br, and 1999aa where trace signatures of C iii at optical wavelengths are presumably detected

    Analysis of the Early-Time Optical Spectra of SN 2011fe in M101

    Get PDF
    The nearby Type Ia supernova SN 2011fe in M101 (cz=241 km s^-1) provides a unique opportunity to study the early evolution of a normal Type Ia supernova, its compositional structure, and its elusive progenitor system. We present 18 high signal-to-noise spectra of SN 2011fe during its first month beginning 1.2 days post-explosion and with an average cadence of 1.8 days. This gives a clear picture of how various line-forming species are distributed within the outer layers of the ejecta, including that of unburned material (C+O). We follow the evolution of C II absorption features until they diminish near maximum light, showing overlapping regions of burned and unburned material between ejection velocities of 10,000 and 16,000 km s^-1. This supports the notion that incomplete burning, in addition to progenitor scenarios, is a relevant source of spectroscopic diversity among SNe Ia. The observed evolution of the highly Doppler-shifted O I 7774 absorption features detected within five days post-explosion indicate the presence of O I with expansion velocities from 11,500 to 21,000 km s^-1. The fact that some O I is present above C II suggests that SN 2011fe may have had an appreciable amount of unburned oxygen within the outer layers of the ejecta

    The Fast And Furious Decay Of The Peculiar Type IC Supernova 2005ek

    Get PDF
    We present extensive multi-wavelength observations of the extremely rapidly declining Type Ic supernova (SN Ic), SN 2005ek. Reaching a peak magnitude of MR = –17.3 and decaying by ~3 mag in the first 15 days post-maximum, SN 2005ek is among the fastest Type I supernovae observed to date. The spectra of SN 2005ek closely resemble those of normal SN Ic, but with an accelerated evolution. There is evidence for the onset of nebular features at only nine days post-maximum. Spectroscopic modeling reveals an ejecta mass of ~0.3 M ☉ that is dominated by oxygen (~80%), while the pseudo-bolometric light curve is consistent with an explosion powered by ~0.03 M ☉ of radioactive 56Ni. Although previous rapidly evolving events (e.g., SN 1885A, SN 1939B, SN 2002bj, SN 2010X) were hypothesized to be produced by the detonation of a helium shell on a white dwarf, oxygen-dominated ejecta are difficult to reconcile with this proposed mechanism. We find that the properties of SN 2005ek are consistent with either the edge-lit double detonation of a low-mass white dwarf or the iron-core collapse of a massive star, stripped by binary interaction. However, if we assume that the strong spectroscopic similarity of SN 2005ek to other SNe Ic is an indication of a similar progenitor channel, then a white-dwarf progenitor becomes very improbable. SN 2005ek may be one of the lowest mass stripped-envelope core-collapse explosions ever observed. We find that the rate of such rapidly declining Type I events is at least 1%-3% of the normal SN Ia rate

    The Broad-Lined Type IC SN 2012ap and the Nature of Relativistic Supernovae Lacking a Gamma-Ray Burst Detection

    Get PDF
    We present ultraviolet, optical, and near-infrared observations of SN 2012ap, a broad-lined Type Ic supernova in the galaxy NGC 1729 that produced a relativistic and rapidly decelerating outflow without a gamma-ray burst signature. Photometry and spectroscopy follow the flux evolution from –13 to +272 days past the B-band maximum of –17.4 ± 0.5 mag. The spectra are dominated by Fe II, O I, and Ca II absorption lines at ejecta velocities of v ≈ 20,000 km s–1 that change slowly over time. Other spectral absorption lines are consistent with contributions from photospheric He I, and hydrogen may also be present at higher velocities (v 27,000 km s–1). We use these observations to estimate explosion properties and derive a total ejecta mass of ~2.7 M ☉, a kinetic energy of ~1.0 × 1052 erg, and a 56Ni mass of 0.1-0.2 M ☉. Nebular spectra (t \u3e 200 days) exhibit an asymmetric double-peaked [O I] λλ6300, 6364 emission profile that we associate with absorption in the supernova interior, although toroidal ejecta geometry is an alternative explanation. SN 2012ap joins SN 2009bb as another exceptional supernova that shows evidence for a central engine (e.g., black hole accretion or magnetar) capable of launching a non-negligible portion of ejecta to relativistic velocities without a coincident gamma-ray burst detection. Defining attributes of their progenitor systems may be related to notable observed properties including environmental metallicities of Z \u3e Z ☉, moderate to high levels of host galaxy extinction (E(B – V) \u3e 0.4 mag), detection of high-velocity helium at early epochs, and a high relative flux ratio of [Ca II]/[O I] \u3e1 at nebular epochs. These events support the notion that jet activity at various energy scales may be present in a wide range of supernovae
    • …
    corecore